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Abstract

Genetic algorithms are adaptive algorithms that find solutions to problems by an evolu-
tionary process based on natural selection. They can be used to find approximate solutions
to optimization problems in cases where finding the precise optimum is prohibitively expen-
sive. Drawing a directed graph can be viewed as a problem of optimizing the layout of nodes
and arcs on a page according to certain aesthetic criteria characterizing “good” drawings of
graphs. This paper discusses the use of genetic algorithms for drawing graphs, describing
some experiments with two systems we have developed.

1 Introduction

There are many interesting optimization problems for which no reasonably fast algorithms are
known. In some applications, however, a near optimal solution is acceptable if it can be com-
puted reasonably quickly. Genetic algorithms ([Davis, 1987], [Goldberg, 1985], [Holland, 1975])
are a class of probabilistic algorithms that can find approximate solutions to optimization prob-
lems by starting with a population of randomly generated candidates and “evolving” towards a
solution by applying genetic operators, modelled on genetic processes occurring in nature. Given
sufficient time, a genetic algorithm can find solutions as close to the real optimum as desired.

Drawing a directed graph can be considered as a problem of finding a layout of nodes and arcs
on a page which is optimized according to certain aesthetic criteria chosen to characterize “good”
drawings of graphs. For most reasonable aesthetic criteria, however, finding an exact solution for
large graphs turns out to be prohibitively expensive. The problem of drawing directed graphs
has become of great practical importance with the recent development of interactive software
tools. Such systems often use diagrams such as transition diagrams or structure diagrams, that
are essentially some form of directed graph, to represent and illustrate various aspects of software
systems. Since these diagrams are often generated or modified by the system, the system must
be able to display the resulting diagrams in an intelligible fashion. In these systems, ensuring
reasonable response time is important and a layout that is nearly optimal is generally quite
acceptable. It is therefore desirable to investigate methods for finding approximate solutions.

In this paper we investigate the use of genetic algorithms for drawing directed graphs. Our
motivation for this work is twofold. On one hand, we are interested in the design of interactive
software tools of the kind mentioned above. On the other hand, we are interested in genetic algo-
rithms and have recently been investigating the application of such to a variety of optimization
problems ([Vignaux & Michalewicz, 1989a], [Vignaux & Michalewicz, 1989b], [Michalewicz, Vi-
gnaux & Groves, 1989], [Michalewicz et al, 1989]). This work has lead to a number of proposals
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for improving the performance of genetic algorithms and a proposal for a genetic programming
environment.

The paper is organised as follows. In Section 2 we briefly describe genetic algorithms,
identifying the major components of a genetic algorithm and describing the representation and
genetic operators used in classical work on genetic algorithms. In Section 3 we discuss the
problem of finding a layout for drawing a directed graph, describing the approach taken in
[Eades & Lin, 1989], on which our work is based, and presenting some general aspects of our
formulation of graph drawing in terms of genetic algorithms. In Sections 4, 5 and 6 we describe
two systems we have implemented that use genetic algorithms to find layouts for directed graphs.
In Section 7 we discuss some experiments we have performed with these systems and present
our results. Section 8 presents our conclusions.

2 Genetic Algorithms

The general principle underlying genetic algorithms is that we maintain a population of possible
solutions (candidates) for a given problem, which undergoes a “natural” evolutionary process.
In each generation, relatively “good” solutions reproduce, while relatively “bad” solutions die
and are replaced. To distinguish between “good” and “bad” solutions we need some kind of
evaluation function which plays the role of the environment. As stated in [Davis, 1987]:

“... the metaphor underlying genetic algorithms is that of natural evolution. In

evolution, the problem each species faces is one of searching for beneficial adaptations
to a complicated and changing environment. The ‘knowledge’ that each species
has gained is embodied in the makeup of the chromosomes of its members. The
operations that alter this chromosomal makeup are applied when parents reproduce;
among them are random mutation, inversion of chromosomal material, and crossover
— exchange of chromosomal material between two parents’ chromosomes.”

The general structure of a simple genetic algorithm is shown in Figure 1, in which ¢ is the
generation number, and P(t) is the population during generation .

procedure genetic algorithm
begin
1+ 0
Initialize P(t)
Evaluate P(t)
while (not Termination-condition) do
t+—t+1
Select P(t) from P(t —1)
Recombine P(t)
Evaluate P(t)
end
end

Figure 1: General structure of a genetic algorithm.

To construct a genetic algorithm for a particular problem, we need to specify the following
four components:



1. A genetic representation for possible solutions to the problem.
2. A way to create an initial population of solutions.

3. An evaluation function that plays the role of the environment, rating solutions in terms of
their “fitness”.

4. Genetic operators that alter the composition of children during reproduction.

When the genetic algorithm is run, we also need to specify values for various parameters such
as population size, mutation rate, probabilities of applying genetic operators, etc. In an experi-
mental system, these can be changed for each run.

Most work on genetic algorithms (e.g. [Holland, 1975], [Holland, 1986]) uses bit strings (i.e.
vectors of 0s and 1s) to represent solutions, and uses the genetic operators mutation, inversion
and crossover which operate on bit string representations of candidate solutions.

The mutation operator arbitrarily alters one or more components of the chromosome of the
selected candidate — this increases the variability of the population. Each bit position of each
vector in the new population undergoes a random change with the probability specified by the
mutation rate.

The crossover operator combines the features of two parents to form two similar offspring,
by swapping corresponding segments of the parents’ chromosomes.

This approach works well for many problems, such as the Prisoner’s Dillema game discussed
in [Axelrod, 1987]. In many of the problems we have investigated, however, we have discovered
that more elaborate representations and genetic operators are required, and that additional
constraints may need to be applied to candidates generated to ensure that valid solutions are
obtained ([Vignaux & Michalewicz, 1989a], [Vignaux & Michalewicz, 1989b], [Michalewicz, Vi-
gnaux & Groves, 1989], [Michalewicz et al, 1989], [Janikow & Michalewicz, 1990]).

3 Drawing Directed Graphs

A large number of algorithms have been proposed for drawing graphs. The kinds of algorithms
used, and their costs, vary according to the class of graph for which they are intended (e.g.
trees, planar graphs, hierarchic graphs or general undirected graphs), the aesthetic criteria they
consider, and the methods they use for optimizing the layout. In most cases, finding optimal
layouts for large graphs is prohibitively expensive, so a number of heuristic methods have been
investigated that find approximate solutions in a reasonable amount of time. A good discussion
of the problem of drawing graphs, aesthetic criteria that have been considered, and various
methods that have been proposed is given in [Tamassia, Di Battista & Batini, 1988]. A more
extensive bibliography is given in [Eades & Tamassia, 1989].

Eades and Lin [1989] discuss an approach to drawing directed graphs, based upon the fol-
lowing three aesthetic criterial:

C7  Arcs pointing upward should be avoided.
C5 Nodes should be distributed evenly over the page.
C3  There should be as few arcs crossing as possible.

!The first criterion assumes that the preferred direction for arcs is downwards, this can easily be modified so
that the preferred direction is left to right.



Eades and Lin’s approach works in three stages, addressing each of these criteria in turn. At each
stage the problem of satisfying the corresponding criterion is formulated as a graph theoretic
problem.

In the first stage, the graph is turned into an acyclic directed graph (DAG) by reversing some
of the arcs. The resulting DAG can be arranged so that all arcs point downwords by performing
a topological sort. The DAG thus obtained is then used as the input to stages 2 and 3, and the
arcs that were reversed are restored to their proper direction after all three stages have been
completed. The major problem at stage 1 is to find a minimal set of arcs to reverse; this is
called the “feedback arc set problem” and is known to be NP-hard [Carey & Johnson, 1979].

In the second stage, nodes are distributed evenly on the page. This is done by arranging the
graph in layers and allocating nodes to layers in such a way as to match the height and width of
the graph to the size of the page. This is equivalent to the “multiprocessor scheduling problem”
and is also known to be NP-hard [Carey & Johnson, 1979].

In the third stage, nodes are ordered within layers so as to minimize the number of arc
crossings. This problem is also NP-hard, even when there are only two layers in the graph.

Since all three stages are NP-hard, Eades and Lin discuss a number of heuristics that can
be used at each stage and discuss some of their properties. At stage 3 they add dummy nodes
to arcs spanning more than one layer, so that stage 3 can be done a layer at a time. In the
resulting graph, any bends in arcs occur at dummy nodes.

4 Using Genetic Algorithms to Draw Directed Graphs

In order to investigate the applicability of genetic algorithms to the problem of drawing directed
graphs, we have implemented two systems, called GRAPH-1 and GRAPH-2, which use genetic
algorithms to find layouts for directed graphs. We have based our approach loosely on that
described by Eades and Lin, but for our initial implementations we have only considered aesthetic
criteria, C7 and C3. The way in which we approach C; does not place all nodes on separate layers,
so we do some of what their stage 2 does. At present, however, we do not attempt to spread
nodes evenly on the page; we are currently developing an additional procedure to address this.

GRAPH-1 tries to optimize the layout of the graph according to both € and C3 at once,
as in classical genetic algorithms. GRAPH-2 tackles the problem in two phases, first optimizing
according to criteria C', then optimizing according to criteria Cs. This is closer to Eades and
Lin’s approach, and leads to a genetic algorithm for an optimization task with a decomposed
evaluation function [Janikow & Michalewicz, 1990]. Both systems use “unconvential” genetic al-
gorithms, with non bit-string representations and advanced genetic operators (see [Michalewicz,
Vignaux & Groves, 1989]).

In formulating the graph drawing problem, we consider the page to be divided into a number
of squares. The graph will be drawn with each node in one square and arcs drawn as straight
lines between squares. The graph is assumed to have N nodes, numbered 1 through N, and the
page is assumed to be H squares high and W squares wide. The size of square used is arbitrary,
but it determines the “granularity” of layouts considered and hence the precision with which a
near optimimal layout can be obtained.

In constructing evaluation functions for our systems, we need to consider, for a given can-
didate, the number of arcs that do not point downwards and the number of arc crossings. In
order to allow more possible solutions to be explored, we consider arcs pointing upwards and
arcs pointing horizontally separately. In GRAPH-2, we will also need to consider whether two



nodes occupy the same square on the page. These are calculated, for a candidate M, by the
following functions:

e n,(M) is the number of upward pointing arcs in M,
(

np (M) is the number of horizontal arcs in M,

e n.(M) is the number of crossings between arcs in M, and
)

(
no(M) is the number of nodes in M which occupy the same square.

Each evaluation function will be a linear combination of some of these functions, with weightings
chosen according to the penalty to be associated with each feature.

5 GRAPH-1

In GRAPH-1 we use perhaps the most natural data structure for representing a solution for the
problem of graph layout — an H x W matrix whose elements correspond to the squares on the
page. Each matrix element is set to n if node n is located in the corresponding square on the
page, and 0 if that square is empty. Figure 2 shows a graph, GG1, used in our experiments; Figure
3 shows the genetic representation used by GRAPH-1 for this graph when the page size is 6 x 10.

Every candidate in the initial population has each natural number between 1 and N, in-
clusive, assigned to a random element in the matrix, and Os in the rest. In order to avoid
invalid solutions being generated, every candidate generated must satisfy the constraint that
each natural number between 1 and NV, inclusive, occurs exactly once in the matrix.

Figure 2: Example graph, G;.
The evaluation function used in GRAPH-1, for matrix M, is:

Eval(M) = ay - ny(M) + ap - np(M) + ac - ne(M) + 1



Figure 3: Genetic representation of GG for a 6 x 10 page.

The coefficients a,, ap, and a. determine the significance of upward pointing, horizonal and
crossing arcs, respectively. The minimum value of this function is 1, which occurs when all arcs
point downward and no arcs cross. In our experiments, we have used a, = 2, ap, = a. = 1.

The genetic operators used in GRAPH-1 are obtained by extending the ideas underlying the
three classical bit-string operations described in section 2 to the matrix representation in various
ways. All of the operators preserve the constraint mentioned above.

Swap-rows: Select two arbitrary rows in the matrix and swap them.
Swap-columns: The same operator for columns.

Swap-in-row: Select a row; if the row contains at least two nodes, select two nodes
and swap them.

Swap-in-col: The same for columns.

Single-mutate: Relocate a single node in a matrix. This preserves the intuition
behind the classical mutation operator which is to perform the smallest possible
change.

Small-mutate: Select two entries in a matrix and swap them.

Large-cont-mutate: Select two disjoint parts of a matrix, each consisting of con-
tiguous rows and columns, and swap them.

Invert-a-row: Reverse the order of elements in a row.
Invert-a-column: Reverse the order of elements in a column.
Invert-part-row: Reverse the order of some elements in a row.
Invert-part-column: Reverse the order of some elements in a column.

Crossover: Select some rows and columns; for each row 7 and column j selected,
swap the corresponding elements of the two parent matrices. Following this
operation, some repairs may be necessary to ensure that the resulting matrices
are valid solutions (7.e. that they satisfy the constraint mentioned above).

Cont-crossover: Same as the previous operator, but selected rows and columns
constitute contiguous sets.



6 GRAPH-2

In GRAPH-2 we split the optimization task into separate phases. The first phase only considers
the directions of arcs — whether they point upwards, downwards or horizontally. Once a sat-
isfactory population is found, it is used to generate the initial population for the second phase,
which only considers whether arcs or nodes cross. Once a satisfactory population is found here,
an evalution function which is a combination of the two previous ones is used to determine the
best candidate for the ultimate layout for the output graph.

The data structure used in GRAPH-2 is a 2 X N matrix, in which the i-th column represents
the (z,y) coordinates of node i. Phase 1 ignores the z coordinates, while phase 2 utilizes both
coordinates. Figure 4 shows another graph, G3, used in our experiments; Figure 5 shows the
genetic representation of this graph used by GRAPH-2 when the page size is 5 x 9.

Every candidate in the initial population has each node allocated to a random square on
the page. At no point in our algorithm do we ensure that every node is allocated to a different
square. Later, we will see why we do not need to explicitly preserve this constraint.

Figure 4: Example graph, Gs.

Figure 5: Genetic representation of G5 for a 5 x 9 page.

6.1 Phase 1: Avoiding arcs that point upwards

As stated earlier, phase 1 only considers the direction of arcs (whether they point upwards,
downwards or horizontally). Consequently, the evaluation function used in phase 1 is:

Evaly (M) = ay - ny(M) + ap - np(M) + 1

Again, in our experiments, we have used a, =2 and a5 = 1.

The genetic operators used at this stage are variations of the three classical operators:



Y-swap: Swap the y coordinates of 2 random nodes within a structure.

Y-crossover: Crossover the y coordinates of a random node from one structure
with the corresponding node of another structure.

Y-mutate: Create a new random y coordinate for any node of a structure.

Note that these operators do nothing to guarantee that two nodes do not occupy the same
square on the page. They simply help us to search for a low-cost arrangement of nodes along
the vertical dimension. The Y-swap operator alters two nodes which, if their y coordinates
were swapped, would reduce the evaluation cost. The Y-crossover operator is like the classical
crossover operator, in that it exchanges useful information between structures. Likewise, the
Y-mutate operator allows new points in the search space to be explored.

Phase 1 is repeated a number of times with different initial populations. Each time the best
solution found is saved and the set of vertical arrangements thus obtained is used to generate
the initial population for phase 2.

6.2 Phase 2: Avoiding arcs that cross

The initial population for phase 2 is constructed by using the good set of y coordinates from
phase 1 and random z coordinates. This phase considers whether arcs cross and whether nodes
overlap, since our representation allows this to occur. Consequently, the evaluation function
used in phase 2 is:

Evaly(M) = ac-ne(M) + ao - no(M) + 1

In our experiments, we have used a. = 1, a, = 2.

In designing the set of genetic operators to be used at this stage we must take care not to
undo the progress made in phase 1. Thus, these operators will not change y coordinates. The
genetic operators used at this stage are, again, variations of the three classical operators:

X-swap: Swap the x coordinates of 2 random nodes within a structure.

X-crossover: Crossover the z coordinate of a random node from one structure with
the corresponding node of another structure.

X-mutatation: Randomly change the x coordinate of a given structure’s node.

Note again that these operators do not guarantee that two nodes will not occupy the same
square on the page. We simply let the evaluation function and the power of the genetic algorithm
search for the best solution.

Once phase 2 is complete, we evaluate each structure using a combination of the evaluation
functions used previously and take the best solution found.

7 Experiments and Results

We have performed a number of experiments with the systems GRAPH-1 and GRAPH-2. In this
section we present the results of applying these systems to the two graphs, G; and G, shown
in Figures 2 and 4. In each case we used a page with 10 rows and 6 columns.



7.1 GRAPH-1

In the system GRAPH-1 we ran the genetic algorithm for 200 generations with each graph. The
resulting layouts are shown in Figures 6 and 7.

Figure 6: The result of GRAPH-1 system for G.

These results are encouraging, given that the only factors taken into account in the evaluation
function were the numbers of arcs that cross, point up or are horizontal. Both graphs display
high regularity and constitute an excellent input for the algorithm to distribute nodes evenly on
a page. Similar results were obtained in experiments with larger number of nodes and a larger
page size.

7.2 GRAPH-2

In the system GRAPH-2, for each graph, we ran the genetic algorithm for 200 generations for
each of 10 passes through phase 1, and 200 generations for phase 2. Using a population size of
50 meant that the initial population of phase 2 consisted of 5 structures for every y coordinate
arrangement found by phase 1. The resulting layouts are shown in Figures 8 and 9.

Again, these results are encouraging, given the attributes taken into consideration by the
evaluation functions.



Figure 7: The result of GRAPH-1 system for G.

7.3 Comparison

For G1, the general shape of the layout produced by GRAPH-2 is probably better than that
produced by GRAPH-1. The odd positioning of nodes 1, 8, 5 and 6 would be rectified by the
node distribution algorithm. It does, however, unnecessarily have one arc pointing upwards and
one intersection of two arcs.

For G4, the general shape of the layout produced by GRAPH-1 looks marginally better than
that produced by GRAPH-2, though this difference would probably be negligible once node
distribution has been performed. Again, GRAPH-2 unnecessarily has one arc pointing upwards
and one intersection of two arcs.

These two graphs are not sufficient to make any conclusive comparisons between the two
systems. They do, however, suggest that GRAPH-1 is better at avoiding crossing arcs, while
GRAPH-2 seems to be better at avoiding horizontal and upward arcs. Varying the number of
generations, the probabilities associated with the various genetic operators and the weightings
used for the various aesthetic features would clearly affect the results. Obviously many more
tests need to be performed before more definite concusions can be drawn.
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Figure 8: The result of GRAPH-2 system for G.

8 Conclusions

For several reasons, we are not yet able to fully evaluate the two presented approaches or compare
them with other methods. Firstly, we only have results from few sample graphs; we need to
test both systems on many other examples. Secondly, the algorithm to distribute nodes evenly
on the page is still being implemented; we need to cmplete this before we can make meaningful
comparisons with other methods. Thirdly, the two approaches presented in the paper are, in
some sense, too different. They use different genetic representation, different operators, and
additionally, the system GRAPH-2 is based on the idea of decomposed evaluation function.

To allow the various factors involved in these two systems to be compared and evaluated more
precisely, we plan to implement a variation of GRAPH-1 which uses the same representation and
genetic operators, but has a decomposed evaluation function, and a GRAPH-2 which uses the
same representation and genetic operators, but has a single evaluation function. These should
allow more meaningful comparisons to be made.

When we have these systems working well, we plan to incorporate the most successful system
into an interactive programming tool. We could then allow the user to set various operational
parameters, so the tradeoff between picture quality and speed is under the users’ control. In
particular, the user could ask for high quality drawings at the expense of extra time in order to
generate publication quality diagrams from the system. We also plan to adding other aesthetic
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Figure 9: The result of GRAPH-2 system for G.

criteria (as discused in [Tamassia, Di Battista & Batini, 1988]) and allow user to control which
ones are used.
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